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Strategic Informed Trades, Diversification, and Expected Returns  

 

Abstract 

We examine how imperfect competition impacts expected returns in the large economy 

limit of a noisy rational expectation equilibrium. In our model, both an informed and uninformed 

traders consider the impact of their demands on price. Similar to the case of competitive 

informed traders, we show that factor loadings (betas) explain all cross-sectional differences in 

expected returns. Private information creates two forces that have opposite effects on expected 

returns. On the one hand, prices partially reveal private information about systematic risks, 

which reduces factor risk premiums. On the other hand, privately informed traders reduce their 

absorption of systematic risk, which increases factor risk premiums. In a setting with a 

monopolist privately informed trader, the latter effect dominates, which contrasts to settings with 

price-taking informed traders. Moreover, a reduction in disguise for informed trades afforded by 

noise trade volatility leads to greater price informativeness, but also higher expected returns, 

suggesting a new avenue for empirical examination of the pricing effects of asymmetric 

information. In particular, noise trades in diversified portfolios reduce price informativeness 

about systematic risks, but facilitate large traders’ bearing of systematic risks and reduce 

expected returns. 
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1 Introduction 
Accounting research has devoted considerable attention to the effects of asymmetric 

information on expected returns. Prior theoretical studies show that, in large economies 

comprised of perfectly competitive traders who can fully diversify their holdings, asymmetric 

information only affects expected returns via its impact on premiums for systematic risks 

(Hughes et al. 2007; Lambert et al. 2007). In particular, cross-sectional differences in factor 

loadings (betas) explain any cross-sectional differences in expected returns.1 In a CARA/normal 

setting, the premium for systematic risk depends on the average precision of traders’ beliefs 

(Hughes et al. 2007; Lambert et al. 2012). Compared to a no-information benchmark, 

asymmetric information reduces expected returns by increasing the average precision of traders’ 

beliefs. For a given set of informative signals, expected returns are higher if only a subset of 

traders observes them privately, because uninformed traders only observe a noisy version of 

private information via prices. 

We examine whether similar results hold when modeling the economy as the limit of 

finite economies in which traders participate in imperfectly competitive markets, and therefore 

take into account the price impact of their trades. Our model can be viewed as a multi-asset 

extension of Kyle (1989). In order to emphasize the consequences of imperfectly competitive 

informed trading, we portray the informed trader as a risk-neutral monopolist who can observe 

prices (i.e., places limit orders as in Kyle 1989). Risk-neutrality allows the informed trader to 

have a non-negligible impact on prices in the large economy limit.2 The informed trader plays 

                                                                                                                                                                                          

1 When we speak of expected returns, we refer to unconditional expected returns. Privately informed traders may, 
and often do, expect returns in excess of the compensation for systematic risk. 
2 A risk-averse informed trader yields qualitatively similar results in a finite economy so long as risk aversion is not 
too great. The similarity stems from the fact that uninformed traders drive the unconditional expected returns. In the 
large economy limit, risk neutrality ensures sufficient risk-bearing capacity for the demands of the informed trader 
to have a price impact. With finite risk tolerance, an informed trader will bear only a negligible amount of 
systematic risk in the limiting large economy, resulting in large-economy expected returns that match an economy in 
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two roles in our model: she exploits private information and provides liquidity to noise traders in 

order to capture the systematic risk premium. Risk neutrality maximizes the informed trader’s 

incentive for information-based trades, but also positions her to capture a portion of the 

systematic risk premium. In the absence of private information, the informed trader extracts half 

of the risk premium. Given private information, the informed trader curbs her demands to limit 

the revelation of her private information to uninformed traders, thereby absorbing less risk as a 

counter party to noise trades. It follows that uninformed traders bear greater systematic risk for 

which they require a higher expected return.3 

Diversification by uninformed traders plays a key role in driving our large economy 

results with respect to expected returns. In the limit, uninformed traders diversify, which implies 

that trades in a given asset represent only a small fraction of an individual uninformed trader’s 

portfolio, and a small fraction of overall trade in the asset.4 This causes uninformed traders to 

constructively behave as price takers. At the margin, prices depend on diversified uninformed 

traders’ demands and, therefore, include risk premiums only for non-diversifiable (systematic) 

risk. If, at the margin, an uninformed trader were to infer that an individual asset is mispriced, he 

could initiate small trades in that asset without affecting his overall risk exposure due to local 

risk-neutrality. Because all uninformed will draw the same inference that the asset is mispriced, 

all would adjust their demands. In equilibrium, perfect competition among uninformed traders 

would dissipate the pricing of any diversifiable risk. 



which those traders do not exist. The result that asymmetric information only impacts systematic risk premiums is 
unaffected in this case. 
3 Diamond and Verrecchia (1991) predict a similar phenomenon in a single-firm setting where expected future 
market illiquidity increases large traders’ expected costs of unwinding large positions. While the settings differ, in 
both cases, illiquidity increases the risk that must be borne by uninformed traders and drives up expected returns. 
4 In principle, uninformed traders could have some undiversified holdings so long as they do not all overweight the 
same individual assets. In our model, each asset represents a small fraction of the economy so that a nontrivial 
fraction of uninformed traders can have an undiversified position in a given asset only if other traders take the 
opposite side of the trade. 
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We develop further insights by considering extreme cases of market liquidity. When 

noise trade is so volatile as to preclude uninformed traders learning from prices, the risk-neutral 

informed trader absorbs half of the liquidity demands as the profit maximizing share of the 

systematic risk premium. At the other extreme, when the variance of noise trades approaches 

zero, trading costs become infinitely large and the informed trader only takes infinitesimal 

positions, which leaves uninformed traders to absorb systematic risks associated with expected 

noise trades.5 After imposing structure on the informed trader’s private information and noise 

trades, we show that the impact of risk-sharing dominates the effect of information revealed 

through price, leading to a monotone relation between market liquidity and expected return; i.e., 

expected returns are decreasing in the variance of noise trades, even though prices become less 

informative. In this same setting, we also show that the introduction of private information 

increases expected returns because the reduction in the informed trader’s absorption of 

systematic risk more than offsets the effect of the partial revelation of private information 

through prices.  

We further show that noise traders’ portfolios play a key role in the pricing of systematic 

risk. If the informed trader has private information on systematic risks, then she needs to trade in 

fully diversified portfolios to exploit that information. She can only do so if noise traders also 

trade in diversified portfolios; otherwise, uninformed traders can infer her trades, similar to zero-

noise-trade-variance case.6 As the variance of noise trades in factor portfolios increases, the 

informed trader’s information-based demands absorb more systematic risks, causing expected 

returns required by uninformed traders to decrease. Even though greater noise trade variance 

reduces the uninformed traders’ learning about systematic risks, expected returns decline. Again, 
                                                                                                                                                                                          

5 We can only examine the zero noise-trade variance case with competitive uninformed investors. The market breaks 
down if uninformed traders consider their price impact and there is no noise in supply (Kyle 1989, p. 335). 
6 See Subrahmanyam (1991) for a model in which informed traders can trade a diversified index to bet on systematic 
risks. His model has all risk-neutral traders so that expected returns are always zero. 
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this occurs because the risk-neutral informed trader’s larger positions reduce the systematic risks 

borne by uninformed traders and the corresponding risk premiums. This suggests that liquidity 

trades in diversified portfolios, such as automatic investments into index funds for retirement 

accounts, improve risk sharing by drawing informed traders to take larger positions that absorb 

systematic risk. 

Recent empirical studies by Armstrong, Core, Taylor, and Verrecchia (2011) and Akins, 

Ng, and Verdi (2012) show a positive association between imperfect competition among 

informed traders and cost of capital. The theoretical basis is the prediction that when the number 

of informed traders is small, they trade less aggressively on their private information so as to 

limit the information that uninformed traders can learn from price. This lowers the average 

precision of information and increases the risk borne by uninformed traders, which raises cost of 

capital. In our model, however, expected returns depend solely on systematic risks, so that any 

cross-sectional variation in expected returns will vanish after controlling for factor loadings. Of 

course, it is also possible that uninformed investors are not well diversified, in which case firm-

specific risks may be priced. This would allow for cross-sectional variations in cost of capital 

even after controlling for betas.7 

Another direction for future empirical inquiries is to consider the extent of uninformed 

shareholders’ diversification when examining the effects of information asymmetries on 

expected returns. For example, Faccio, Marchica, and Mura (2011) find empirical evidence that 

firms with shares held by investors with well diversified portfolios care less about firm-specific 

risk taking. Controlling for betas in such a context, we suggest consideration of numerator, or 

cash flow, effects as drivers of cross-sectional differences in expected return. For an example in 

                                                                                                                                                                                          

7 However, this poses a conundrum in that it is unlikely that uninformed traders would irrationally under diversify 
and, yet, be sufficiently rational to extract information from prices. 
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a moral hazard setting, Gao and Verrecchia (2012) show that idiosyncratic risk increases the risk 

premium paid to managers as part of a performance-based compensation package (a numerator 

effect), while the expected return to investors (denominator effect) depends entirely on 

systematic risk.8 In their setting, better firm-specific information reduces premiums required to 

induce managerial effort, while better economy-wide information reduces systematic risk and, 

hence, expected return.9 

Relating our results to real markets, we might envision hedge fund managers as large, 

risk tolerant traders with private information who may profit from capturing risk premiums, as 

well as from exploiting an information advantage. Accordingly, better private information might 

translate into less risk absorption by hedge funds, leading to higher expected returns by 

uninformed traders who are left to cover liquidity demands of noise traders. Holding the 

precision of private information constant, greater market liquidity in the sense of more volatile 

noise trades might provide greater disguise for information-based hedge fund trades leading to 

higher expected returns. We are unaware of empirical inquiries addressed to such a prediction, 

suggesting a new avenue for future empirical research.  

The remainder of the paper is organized as follows: Section 2 characterizes equilibrium 

expected returns in a finite economy, section 3 takes the large economy limit, section 4 extends 

the analysis after imposing additional structure on information and noise trades. Section 5 

concludes. 

                                                                                                                                                                                          

8 Also, see Ou-Yang (2005) for a related moral hazard setting. See Christensen, Feltham, and Wu (2002) for a 
setting in which the imposition of idiosyncratic risk on managers impacts the rate of return used in residual income 
compensation metrics, again resulting in numerator effects of idiosyncratic risk. 
9 In some cases, concerns over cash flow effects can provide incentives to reduce the information provided by the 
accounting system. For example, Caskey and Hughes (2012) show that conservative accounting measures, which 
provide distorted information, have beneficial cash flow effects because they mitigate asset substitution problems in 
levered firms. In their case, more informative (unbiased) accounting reports can reduce firm value. 
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2 Equilibrium in a finite economy 

2.1 Equilibrium 

Model setup 

In this section, we derive a linear equilibrium in prices for a finite set of risky assets. As 

in Kyle’s (1989) analysis in a single risky asset setting, we assume that both an informed and 

uninformed traders observe prices when choosing their demands; i.e., place limit orders. Traders 

allocate their demands between a risk-free asset, with return normalized to zero, and N risky 

assets, and share the prior belief that the vector v of the risky assets’ payoffs is normally 

distributed with mean v  and covariance matrix vΣ . The supply of risky assets, net of noise 

trades, x is a N × 1 vector of normally distributed random variables with mean x , covariance 

matrix xΣ , and independent of v. 

We assume that a risk-neutral informed trader has private information yielding the 

posterior belief that v has mean iv  and covariance matrix .ii v v Σ Σ Σ  We further assume that 

iv  is joint normally distributed with v and x, and is uncorrelated with x. The combination of risk 

neutrality and monopoly on private information implies a strong incentive for distorting trades to 

exploit an information advantage.10 Risk neutrality also implies a comparative advantage and 

related incentive to capture the risk premium. As we will demonstrate, these incentives create a 

tension that plays an important role in determining equilibrium expected return. The informed 

trader places demands , 1, ,ny n N   to maximize her expected payoff: 

  1
E ( ) E ( ) ( E [ ]),

N
i n n i i in

y v p


       
  y v p y v p  (1) 

                                                                                                                                                                                          

10 As we mention in the introduction, risk neutrality is sufficient to ensure a price impact of the informed trader’s 
demands in the large economy limit. We obtain similar results in a setting with multiple risk-neutral traders who 
place market orders, as in Kyle (1985), so long as there are more uninformed traders than informed traders.  A linear 
equilibrium with multiple, risk-neutral informed traders who possess homogeneous private information does not 
exist (See, e.g., Back, Cao, and Willard 2000). 
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where y p is the opportunity cost of holding those shares. 

There are M uninformed traders with CARA utility and risk-aversion A. In deriving a 

linear equilibrium, we assume it is common knowledge that the uninformed traders conjecture 

that the informed trader follows a linear strategy of the form 

 0 ( ) ,v i p   y q Q v v Q p  (2) 

and that the informed trader and uninformed traders m m  conjecture that trader m follows a 

linear strategy of the form 

 0 .m p d c C p  (3) 

These conjectures imply that uninformed trader m’s posterior belief about v is normally 

distributed, allowing us to write the objective function in terms of certainty equivalents: 

 1
|2max (E[ | ] ) .m m m v p mA  d d v p p d Σ d  (4) 

The market clearing condition is: 

 
1

.
M

mm
 y d x  (5) 

Trading strategies 

Conjectures depicted by equations (2) and (3) along with the market clearing condition 

(5) allow us to treat the informed trader and uninformed trader m as optimizing against the 

following residual supply curves, respectively: 

 , ,i i u u m   p μ Λ y p μ Λ d  (6) 

where iμ  ( uμ ) does not depend on y (dm). Matrices iΛ and uΛ reflect the sensitivities of prices 

to informed and uninformed traders demands, respectively. Substituting the informed trader’s 

residual supply curve (6) into the objective function (1) yields the following two equivalent 

expressions of the informed trader’s first-order condition, ( )i i i i   v μ Λ Λ y0 : 
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 1 1( ) ( ), and ( ) ( ),i i i i i i
      y Λ Λ v μ y Λ v p  (7) 

with the second-order condition that i iΛ Λ  is positive definite. The term i v p reflects the 

informed trader’s expected per share profit, and iΛ y  reflects her anticipation of the impact of her 

demands on price. Her trade given by (7) equates her marginal profit i v p  per share to the 

adverse impact iΛ y of her demands on price; i.e., ( )i i  Λ y v p . 

When inferring information from price, uninformed trader m can apply the conjectured 

uninformed strategy given by (3) and informed strategy given by (2) to the market clearing 

condition given by (5) to derive a noisy signal s of the informed trader’s information i v v : 

 

 

0 0

1 1
0 0

( ) ( 1)( )

( 1)( ) ( ).

v i p m p

v p m p i v

M

M 

       

           
y

q Q v v Q p d c C p x

s Q Q p x q d c C p v v Q x x


 (8) 

This yields the posterior beliefs: 

 1 1
|E[ | ] E[ | ] ( ) , ( ) ,i i i i iv v s v p v v v s v

       v p v s v Σ Σ Σ s Σ Σ Σ Σ Σ Σ  (9) 

where 1 1( )s v x v
  Σ Q Σ Q  and E[ | ]v p  do not vary with dm. The uninformed trader m’s residual 

demand curve given by (6) and the first-order condition given by (4) imply that dm satisfies the 

following equivalent expressions: 

 1 1
| |( ) (E[ | ] ), and ( ) (E[ | ] ),m u u v p u m u v pA A        d Λ Λ Σ v p μ d Λ Σ v p p  (10) 

where p depends on dm, and the second-order condition requires that the matrix |u u v pA Λ Λ Σ  

be positive definite. The uninformed traders weigh their expected profit E[ | ]v p p  not only 

against their anticipation of the adverse impact of their demands u mΛ d  on price, but, as well, the 

risk |v p mAΣ d  that they absorb, a brake on demands not present for the risk neutral informed 

trader. 
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Equilibrium 

The following proposition summarizes the equilibrium up to the matrix iΛ : 

Proposition 1: 

The equilibrium price, expected returns, informed demand, and uninformed demands are: 

 
   

|

1 1 11
|

E[ | ] ( )

( ) ( ) ( ) ( ) ,i

u v p m

u v p i i v s i i i i i iM

A

A   

  

             

p v p Λ Σ d

v Λ Σ Λ Λ I Σ Σ Λ x Λ Λ Λ v v Λ x x
 (11) 

   1 11
|

Effect of informed trader'sEffect of risk-aversion
absorption of risk associatedand imperfect competition
 with expected noise tradesamong uninformed

E[ ] ( ) ( )iu v p i i v s iM A         v p Λ Σ Λ Λ I Σ Σ Λ ,  x  (12) 

    1 1 1

Informative part of demands; related toUninformative part of demands related to 
priabsorption of risk associated with

expected noise trades

( ) ( ) ( )ii i i v s i i i i i
           y Λ Λ Λ Σ Σ Λ x Λ Λ v v Λ x x


vate information and absorption of risk

 associated with unexpected noise trades

,  (13) 

   1 11 1( ) ( ) ( ) ( ) ,im i i v s i i iM M
           d x y Λ Λ I Σ Σ Λ x v v Λ x x  (14) 

where   11M
u i i i iM

   Λ Λ Λ Λ Λ . 

As mentioned earlier, the uΛ  term in (11) arises from uninformed traders anticipating the 

impact of their demands on prices. The 1
iv s

Σ Σ  term resembles a signal ( )ivΣ  to noise ( )sΣ  

ratio and reflects the informed trader’s sensitivity to revealing information. Ceteris paribus, the 

informed trader becomes less aggressive when prices reveal more of her information (higher

1
iv s

Σ Σ ). This reduces the informed trader’s absorption of expected noise trades x  and related 

risk. The informed trader’s absorption of x  can also be written in terms of the sensitivities of 

prices to both informed and uninformed traders’ demands; i.e.: 

    111 1 1 1
|( ) ( ) ( ) ( ) ,ii i i v s i i i u v pM A

           Λ Λ Λ Σ Σ Λ x Λ Λ Λ Σ x  (15) 

where the absorption depends on the magnitude of informed trader’s responsiveness 1( )i
Λ  to 
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expected profits from (7), relative to the total of the informed trader’s responsiveness and the 

uninformed traders’ responsiveness   1
|u v pM A

 Λ Σ  to expected profits from (10). Recall that 

the informed trader absorbs noise trades in order to capture the risk premium on such trades and 

that this incentive competes with her motivation to exploit her information advantage. 

2.2 Special case – Risk-neutral uninformed traders 

A useful special case for characterizing price sensitivities to informed demands in closed 

form is to assume uninformed traders’ are risk neutral; i.e., 0A  : 

Corollary 1.1: 

If uninformed traders are risk-neutral, then the following iΛ  satisfies the equilibrium 

conditions: 

  1/2 1/2 1/2 1/2
1 ,i

M
i x x v x xM

 
Λ Σ Σ Σ Σ Σ  (16) 

which implies the following expected returns and informed demands: 

  11 1 1
2 2 2E[ ] , ( ) .i i iiM M

      v p Λ x y x Λ v v Λ x x  (17) 

The expression for iΛ  resembles the solution from Caballé and Krishnan (1994).11 The 

first term in the informed trade y in (17) reflects the informed trader’s average holdings. In the 

large economy limit ( , )N M  , expected returns approach zero and the informed trader bears 

none of the expected supply x . When uninformed traders are risk-averse, the informed trader 

extracts some of the risk premium by bearing some of the expected supply even in the limit. The 

informed trader also absorbs some of the unexpected supply in this case. 

                                                                                                                                                                                          

11 Informed traders in Caballé and Krishnan (1994) submit market orders to perfectly competitive market makers. 

Their expression for iΛ  is equivalent to expression (16) after removing the 1
M

M term and multiplying by one half. 

As in Caballé and Krishnan (1994) , it is possible that there exists another, non-symmetric, matrix iΛ  satisfying the 

equilibrium conditions. 
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2.3 Extreme cases of market liquidity with price taking uninformed traders 

In section 3, we take the large economy limit. Here we consider the effects of market 

liquidity given finite assets assuming that uninformed traders are price takers. The price-taking 

assumption removes their price impact matrix, uΛ , from the expressions (11) and (12) for prices 

and expected returns, and from the equilibrium relation that determines iΛ .12 This eases the 

analysis allowing us to examine the role of noise trade volatility as a disguise for the informed 

trader’s demands by comparing the extremes of uninformative prices versus certain noise trade. 

We cannot examine the certain noise trade case when uninformed traders consider their price 

impact because the market breaks down as in Kyle (1989, p. 335). When there is no uncertainty 

about noise trade, the price impact matrices iΛ  and uΛ  become unbounded and both informed 

and uninformed traders take positions approaching zero, as can be seen by the inversion of the 

price impact matrices in (7) and (10). 

In the case of price-taking uninformed traders, we have the following corollary: 

Corollary 1.2: 

If uninformed traders are price-takers, then as noise trade variance becomes unbounded 

and price becomes uninformative ( )x Σ : 

   11 1 1 1
| 2 2 2, E[ ] , ( ).v p v v v iM MA A


     Σ Σ v p Σ x y x Σ v v  (18) 

As noise trade becomes certain ( )x Σ O : 

 1 1 1
| 2 2 2, E[ ] ( ) , ( ) .iv p v v v iM A       Σ Σ Σ v p Σ Σ x y x x 0  (19) 

The extreme noise-trade-variance cases provide closed-form solutions for iΛ . 

Uninformed traders learn more as noise trade becomes certain and the informed trader reveals 

                                                                                                                                                                                          

12 Alternatively, we could assume that risk-aversion A increases in proportion to the number M of uninformed 
traders, and take limits as M   . This is analogous to the Kyle’s (1989, section 8) analysis of a market with free 
entry of uninformed traders. 
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half of her information notwithstanding that her demands become infinitesimally small. Expected 

returns are higher in this case because, as the informed trades approach zero, virtually all of the 

payoff risk is borne by uninformed traders for which they require a premium. As in Kyle (1989), 

the informed trader reduces the size of her demands, but the price reaction to her trades becomes 

large implying that uninformed traders learn more. Comparing expected returns in (19) to (18), 

we see that expected returns are lower in the case where uninformed traders learn nothing. This 

occurs because infinite noise trade variance provides infinite disguise, which induces the 

informed trader to trade more aggressively thereby absorbing more risk. The greater risk 

absorption more than compensates for the diminished learning from prices. In section 4, we 

provide a setting where expected returns are strictly decreasing in noise trade variance. 

3 Large economy limit 
We characterize a linear equilibrium for a large economy by letting ,N M  , with 

/N M  approaching a finite constant which, without loss of generality, we assume to be one.13 In 

doing so, we exploit an approximate factor structure to characterize the limiting behavior of the 

payoffs’ covariance matrix. Chamberlain and Rothschild (1983) define an approximate K-factor 

structure as follows:14 

Definition: The sequence 1{ }vN N

Σ  of N N  covariance matrices has an approximate 

factor structure if there exists a sequence of 1 K  row vectors 1{ }n n

b  and a sequence 1{ }eN N


Σ  

of N N positive semi-definite matrices whose eigenvalues are uniformly bounded by (0, )    

such that: 

                                                                                                                                                                                          

13 The assumption that N / M approaches a constant means that both N and M grow at the same rate; otherwise, the 
ratio N / M approaches either zero or infinity. Hughes, Liu, and Liu (2007), Lambert, Leuz and Verrecchia (2007), 
and Ou-Yang (2005) employ similar assumptions. 
14 Our discussion pertains to the existence of an approximate factor structure from the perspective of investors, 
rather than to the econometrician’s problem of identifying a factor structure. See Gilles and LeRoy (1991) and 
Lewellen et al. (2010) for discussions of issues that arise in testing particular factor models. 
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 ,vN N N eN Σ B B Σ  (20) 

for all N where nb  is the nth row of the N K  matrix NB . 

Chamberlain (1983) and Chamberlain and Rothschild (1983) show that an approximate 

K-factor structure is equivalent to having the first K eigenvalues of vNΣ  becoming unbounded as 

N    while the remaining eigenvalues remain positive (no redundant assets) and finite (any 

unbounded eigenvalues are included in the K factors). The following remark shows that an 

approximate factor structure holds under the weak assumption that the payoff from a finite 

investment in an equally weighted portfolio has finite variance as N   : 

Remark: If the equally weighted portfolio has positive, but bounded, variance absent any 

prior information   1
1

lim var (0, )
N

N nN n
v 

  , then vΣ  has an approximate K-factor 

structure. 

Assuming that vΣ  has an approximate factor structure, then we can write the payoff 

vector v in the following form: 

 ,  v v Bf e  (21) 

where f is K-dimensional standard normal random vector and e is an N-dimensional random 

vector with mean zero and covariance matrix eΣ . We do not restrict the informed trader’s 

information to either systematic or idiosyncratic risks.  

The following proposition characterizes expected returns in the limiting economy up to 

the matrix of sensitivities of prices to informed demands iΛ . 

Proposition 2: 

Assume that the informed trader’s second-order condition is satisfied in the limiting 

economy. Then, the risk premium approaches the following as ,N M  , and depends only on 
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systematic risks: 

    1 11
|E[ ] ,ip f p p i i v s iMA

      v p B Σ B Λ Λ I Σ Σ Λ x  (22) 

where 1cov( , )var( | ) cov( , )p
 B B e p p f p f  is the N K  matrix of conditional factor 

loadings and the 1K  vector of factor risk premiums is 

    1 11
| .if p p i i v s iMA

    Σ B Λ Λ I Σ Σ Λ x  (23) 

It is clear from (22) that information asymmetry affects expected returns only via the 

factor loadings Bp and factor risk premiums as depicted by (23). This implies that differences in 

firms’ betas explain any cross-sectional variation in expected returns. Information asymmetry 

does not create any new factors, but instead impacts the pricing of the systematic components of 

the firms’ fundamental payoffs.  

Proposition 2 extends previous results in a perfectly competitive setting by Hughes. et al. 

(2007) and Lambert, et al. (2007) to an imperfectly competitive setting in which a large informed 

trader with a monopoly on private information seeks to take advantage of that information. Risk 

neutrality on the part of the informed trader along with a monopoly position implies a strong 

incentive for distorting trades away from a diversified portfolio. However, expected returns are 

driven by the risk premium required by well-diversified uninformed traders. Competition among 

uninformed traders eliminates their incentive to deviate from a diversified portfolio, so that 

expected returns reflect only non-diversifiable risk. 

Risk neutrality also adds a further dimension by creating an incentive for the informed 

trader to extract part of the factor risk premium. Greater noise trade volatility reduces the 

informed trader’s concern about revelation of her private information enabling greater absorption 

of systematic risk and lowering expected returns required by uninformed traders for bearing the 

remainder. This differs from the competitive setting in which aggregate demands by a continuum 
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of risk-averse privately informed traders reduce systematic risk premiums. If the informed trader 

were risk-averse, the uninformed traders would continue to hold diversified portfolios so that 

expected returns reflect only systematic risk. The results would differ in that a single, risk-averse 

informed trader’s risk-bearing capacity would be negligible in the large economy limit. As a 

result, her trades in systematic risk would be negligible, neither revealing information, nor 

relieving the risk burden on the uninformed traders. The negligible informed trades in systematic 

risk would result in expected returns that match an economy with no informed trader.   

4 Additional structure on private information and noise trades 

4.1 Finite economy 

In this section, we impose additional structure on the informed trader’s private 

information and noise trades that enables us to both show the existence and uniqueness of a 

linear equilibrium with a closed-form solution for the sensitivities of prices to informed 

demands, and perform additional analysis of expected returns and those demands. Specifically, 

we require that the informed trader’s private information does not alter the covariance structure 

between asset payoffs, and that noise trades include trades in factor portfolios.15 This structure 

makes it possible to decompose trades in the limit by risk sources (both systematic and 

idiosyncratic) and allows us to more fully portray the effects of the impact of private information 

and market liquidity as defined by the volatility of noise trades on expected return. 

If there are no redundant assets, we can, without loss of generality, write the covariance 

matrix of v as v v Σ TΘ T  where T is an orthonormal matrix of eigenvectors (   T T TT I ) 

and vΘ  is a diagonal matrix containing the N strictly positive eigenvalues of vΣ . Denoting the 

                                                                                                                                                                                          

15 These assumptions are made precise below applying principal components analysis as used in section 3 in 
deriving a factor structure for asset payoffs. See Van Nieuwerburgh and Veldkamp (2010) and Banerjee (2011) for 
examples of this approach in settings with price-taking investors. 
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kth largest eigenvalue by k , 1 2 0N      , we can write 
1

N
v k k kk




 Σ t t , where kt  

denotes the kth column of T.16 A portfolio is a linear combination of the individual assets’ 

payoffs. Traders can trade a portfolio with a payoff 1/2 ( )k kkf    t v v  with price 

1/2 ( )fk kkp    t p v that isolates the risk represented by the kth eigenvalue, with 

1 1
1

var( ) 1
N

k k v k j k j j kk kj
f    


    t Σ t t t t t  and cov( , ) 0k jf f   for j k .17 The N orthogonal 

portfolio payoffs in the vector 1/2 ( )v
  f Θ T v v  are the principal components of v, which we 

refer to as ‘factors’ for the sake of brevity. By construction, var( ) f I . 

We make two assumptions that allow us to derive an expression for iΛ  in terms of trade 

in each factor. First, we assume that the covariance matrix of the informed trader’s posterior 

mean iv  has the same eigenvectors as vΣ , var( )i i v TΘT , where i vΘ Θ  is a diagonal matrix. 

In other words, the informed trader’s posterior variance, ( )ii v v v i    Σ Σ Σ T Θ Θ T . As 

mentioned above, this assumption implies that the informed trader’s information does not alter 

the covariance structure between assets. It applies, for example, if the informed trader obtains a 

signal v η  where η  is normally distributed, independent of v, with a covariance matrix having 

eigenvectors T. Second, we assume that the noise trade covariance matrix has the eigenvectors T 

so that x x Σ TΘ T , xΘ  diagonal, consistent with noise traders transacting directly in the factor 

portfolios. We denote by ki  the kth diagonal element of iΘ , corresponding to the informed 

trader’s information on the kth factor, whose prior variance is k . We denote by kx  the kth 

                                                                                                                                                                                          

16 This decomposition can be recast as a K-factor structure e BB Σ  by putting 
1

K
k k kk




 BB' t t  and 

1

N
e k k kk K


 

 Σ t t  or, equivalently, 1/2
K KB T Θ and e e e eΣ T Θ T  where KT  ( )eT  contains the first K columns of 

T (columns 1, ,K N   of T) and KΘ  ( )eΘ  is the upper K×K quadrant of vΘ  (lower (N-K)×(N-K) quadrant of vΘ . 
17 The equality follows because the eigenvectors are orthonormal or, equivalently, 1k k t t  and 0k j t t  for j k . 
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diagonal element of xΘ , corresponding to the variance of noise trade in the portfolio with 

payoffs 1/2 ( )k kkf    t v v  that represents the kth factor. 

Under these assumptions, we obtain the following expression for expected returns: 

Proposition 3: 

If the covariance matrix of the informed trader’s posterior mean and noise trade satisfy 

iv i Σ TΘT and x x Σ TΘ T , iΘ  and xΘ  diagonal, then the expected return on the kth factor 

and the vector of expected returns are: 

 

   2
1 1 1

|2 1 2

Effect of risk aversion and Effect of informedimperfect competition among trader's absorptionuninformed traders of risk associated 
expected noise trades 

E[ ] 1 ki

kxk
k fk k k pM Mf p A 

 
    

 
 2

1
2

1/2

1 ,

E[ ] E[ ],

ki

kxk
fk k fk

v f

x x
 





 

  



v p TΘ f p
 (24) 

where 
2

2|
ki

ki kxk
k p k


  

 


  is the uninformed traders’ posterior variance for the kth factor, and 

0k   is the kth element of the diagonal matrix i Θ TΛT and 1/2
fk kkx    t x . The informed 

demand in the kth factor is: 

   2
1 1
2 1 ,ki

kkxk
fk fk ki fk fky x f x x

 
      (25) 

where 1/2 ( )ki k ikf    t v v and 1/2
fk kkx    t x . 

 

The following corollary gives the effect of noise trade variance on expected returns and 

sensitivity of price to informed demands k . This effect plays a role in deriving the large-

economy expected returns. 
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Corollary 3.1: 

The price impact ki

kx
k


  . The uninformed traders’ posterior uncertainty |k p  is 

increasing in kx . Expected returns E[ ]k fkf p  and the price impact k  are both decreasing in 

the variance kx  of noise trades. The expected informed demand E[ ]fky  is increasing in kx .  

Taking limits, as kx   ( 0)kx  , 2 1 1
2( 1)

M
k kM MA 

  ( k  becomes unbounded at 

rate 1/2
kx  ), 1 2 1 1

2 2( 1)E[ ] M
k fk k kM Mf p A x

   ( E[ ]k fkf p  becomes unbounded), and 

1

2( 1)1 1
2 2 1 kM

M
fk fk kiM A

y x f





   
 

   1 1
2

M
fk fk fkMy x x  . 

Increases in noise trade variance both reduce the information revealed through price ( |k p  

increases in kx ) and increase the amount of risk associated with noise trades absorbed by the 

informed trader. Corollary 3.1 implies that the increase in the risk-neutral informed trader’s risk-

absorption dominates. Expected returns decline as the variance of noise trade increases, even 

though uninformed traders face greater uncertainty. 

In this setting, the effect of distorted risk-sharing is so strong that any private information 

increases expected returns, as we state in the following corollary: 

Corollary 3.2 

Any private information ( 0)ki   yields higher expected returns than no private 

information. Formally, E[ ; 0] E[ ; 0]k fk ki k fk kif p f p       for any (0, ]ki k  . 

The relation between private information ki  and expected returns is non-monotonic; 

however, the above corollary shows that expected returns are lower if there was no private 

information at all. This stands in contrast to settings where informed traders are risk averse and 

perfectly competitive, and any information that increases the average precision of traders’ beliefs 
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yields a reduction in expected returns (Lambert et al. 2012).  

4.2 Large economy limit 

We take the large economy limit for the above setting where traders trade portfolios that 

isolate risk sources. Expression (24) gives the expected returns of 1/2E[ ] E[ ]v f
  v p TΘ f p  

in the finite economy. In this setting, we essentially have factor pricing, where 1/2
v
TΘ plays the 

role of the factor loadings B. The following proposition shows that, when vΣ  has an 

approximate K-factor structure, only the systematic factors are priced in the large economy 

( , )N M  . 

Proposition 4: 

If the covariance matrix v v Σ TΘ T has an approximate K-factor structure, and the 

covariance matrix of the informed trader’s posterior mean and of noise trade satisfy 

iv i Σ TΘT and x x Σ TΘ T , iΘ  and xΘ  diagonal, then, as the economy expands ( , )N M 

, the expected return and informed trade 1/2
k kky    t y  on the kth systematic factor ( )k K  are as 

follows assuming that the variance kx of noise trades for the kth factor grows with the economy 

(at order N): 

     2 2
1 1 1 1

|2 2E[ ] 1 , 1 ,ki ki

kkx kxk k
k fk k p fk fk fk ki fk fkMf p A x y x f x x 

   
         (26) 

Relaxing the assumption on the variance of noise trades such that it grows slower than the 

economy, the expected return and informed demand on the kth systematic factor are: 

  1 1 1 1
| 2 2E[ ] , ( ).k fk k p fk k ki fk fk fk fkM Mf p A x A x y x x         (27) 

The expected returns on idiosyncratic factors ( )k K  all approach zero and the 

corresponding informed demand approaches 1 1
2 2 ( )

k
fk ki fk fky f x x   , where ki

kx
k


   
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( 0)k   and the information-based portion of informed demand approaches 1
2

kx

ki
kif

 (infinity) 

if the corresponding variance kx  of noise trades remains bounded (becomes unbounded). 

Analogous to Proposition 2, Proposition 4 implies that only systematic risks are priced in 

a large economy. Furthermore, it highlights the key role played by noise traders. In particular, if 

noise trades in systematic factor portfolios do not grow with the economy, the informed trader 

has no disguise for her demands. Similar to Corollary 3.1, this drives down the magnitude of 

informed demands. The proof of Corollary 3.1 shows that the noise in price, 2
kxk  , is increasing 

in kx  so that noise trades reduce the information available to uninformed traders; however, the 

effect of reduced risk-absorption by the informed trader dominates. This implies that the sharing 

of systematic risks depends heavily on the extent to which noise traders transact in diversified 

portfolios. For example, liquidity (or irrationally) motivated trading activity in index funds 

provides disguise that can facilitate informed traders’ bearing of systematic risks. 

The following corollary gives expected returns in terms of the original securities: 

Corollary 4.1: 

If the v v Σ TΘ T has an approximate K-factor structure, and the covariance matrix of 

the informed trader’s posterior mean and of noise trade satisfy iv i Σ TΘT and x x Σ TΘ T , 

iΘ  and xΘ  diagonal, then, as the economy expands ( , )N M  , the expected return on the nth 

security is: 

 1/2E[ ] E[ ],K K fKK
  v p T Θ f p  (28) 

where KT  includes the first K columns of T, 1/2
K
Θ is the upper K K  block of 1/2

v
Θ , and 

E[ ]K fKf p contains the first K elements of E[ ]ff p  – the premiums for systematic risks. 

Similar to the large-economy analysis in section 3, we can express the payoff vector v as 
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1/2
v K    v v TΘ f v Bf e  where Kf  denotes the factors that grow with the economy, 

1/2
K KB T Θ  is the N K matrix of loadings on systematic risks 1/2

1
( )

K
K k kkk

f


 Bf t , and 

1/2
e e ee T Θ f  is the vector reflecting the payoff’s sensitivity to the N K idiosyncratic risks 

1/2
1

( )
N

k kkk K
f

 
 e t . In the special setting of Proposition 4, the securities maintain their 

original factor loadings, which is due to the isolation of each risk source.18 

5 Conclusion 
Our analysis makes a strong case for concluding that, in a large economy where 

idiosyncratic risks are fully diversifiable, imperfect competition impacts expected returns solely 

through its effects on systematic risk premiums and assets’ exposures to systematic risks (factor 

loadings). As in perfectly competitive settings, factor loadings fully reflect any cross-sectional 

differences in firms’ expected returns. 

Assuming CARA utility, normal distributions, and a finite economy, we derive 

characterizations of a linear equilibrium in which a risk-neutral informed trader and risk-averse 

uninformed traders are strategic in setting their demands. The informed trader’s equilibrium 

demands reflect a tension between her exploitation of an information advantage and incentive to 

capture a portion of the risk premium by absorbing noise trades. The incentive to mask private 

information causes the informed trader to reduce her absorption of risk associated with the noisy 

supply of assets, leaving more risk to be absorbed by uninformed traders for which they require 

greater expected returns. A similar qualitative result can be obtained in finite economies with a 

risk-averse informed trader so long as she is sufficiently risk tolerant. 

Mild restrictions on the covariance matrix of assets payoffs imply that the asset payoffs 

                                                                                                                                                                                          

18 The matrix 1/2
K K

T Θ  is analogous to the loadings B on systematic risks in our main setting. The extra term 

subtracted from B in Bp subtracted in Proposition 3 equals zero in the setting of Proposition 4. 
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approximately have a factor structure in the large economy limit. In the large economy limit, we 

show that only systematic risks are priced. Although our characterization of equilibrium 

expected returns and informed trades are up to a matrix of price sensitivities to the informed 

trader’s demands, we derive a closed-form solution for a setting in which trade occurs in 

portfolios that isolate distinct sources of risk. This setting allows us to provide additional 

analysis on how noise trades and private information impact expected returns. We show that 

greater liquidity, as measured by the variance of noise trades, leads to lower expected returns 

even though it reduces price informativeness. The lower returns stem from the noise trades 

allowing the informed trader to absorb more risk without revealing more private information.19  

Our results suggest a new avenue for empirical study that seeks to associate cost of 

capital with asymmetric information.  To the best of our knowledge, empirical work has yet to 

explore the inverse relation between expected return and market liquidity as measured by the 

volatility of noise trades, in the presence of asymmetric information among market participants.  

Ceteris paribus variations in liquidity across markets or across time given shocks that alter 

liquidity raise the prospect of detecting such a relation. 

 

                                                                                                                                                                                          

19 This relation disappears in the large economy limit when the informed trader is risk averse and, unlike the case in 
which there is a continuum of competitive informed traders, has limited risk bearing capacity. 
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Appendix 

Proof of Proposition 1 

The conjectured coefficients we need to specify are 0 , vq Q , and pQ , from the uninformed 

traders’ conjecture (2) of informed trade; 0c  and pC  from the uninformed traders’ conjecture (3) 

of other uninformed traders’ positions; iμ  ( uμ ) and iΛ  ( uΛ ) from the informed (uninformed) 

trader’s residual supply curve. We express the equilibrium up to the solution for the informed 

trader’s liquidity matrix iΛ . Matching coefficients between the informed trader’s conjectured 

strategy (2) and chosen strategy (7) yields 1( )v p i
 Q Q Λ  and 1

0 ( )i
q Λ v . Substituting the 

conjectured uninformed strategy (2) into the market clearing condition (5) and rearranging yields 

i i p μ Λ y , where 0( )i i M μ Λ c x  and 11
i pM

Λ C . 

When solving the coefficients for the uninformed, we first impose homogenous strategies 

in the expression for the signal s in (8) by setting 0m p d c C p , which gives the following after 

substituting 0,v p v Q Q q Q v and rearranging: 

 1 1
0( ) ( ).v p vM M     s I Q C p v Q x c  (A1) 

Substituting from (A1) into the uninformed demand (10) and rearranging gives: 

 

 
  

 
0

1 1 1
| |

1 1 1 1
| 0

1 1 1
|

( ) (E[ | ] ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

i i

i i i i

i i

p

m u v p u v p v v s

u v p v v s v v s v

u v p v v s v p

A A

A M

A M

  

   

  

        

      

    
c

C

d Λ Σ v p p Λ Σ v Σ Σ Σ s p

Λ Σ I Σ Σ Σ v Σ Σ Σ Q x c

Λ Σ I Σ Σ Σ I Q C



 
.p



 (A2) 

Substituting 11
p iM

C Λ  and 1
v i
 Q Λ  into the expression for pC  in (A2) gives: 

  1 1 1 11
|( ) ( ) ( ) .i iu v p v v s ii iM A        Λ Λ Σ I Σ Σ Σ I Λ Λ  (A3) 

Substituting 1
| ( )i i iv p v v v i x i v

  Σ Σ Σ Σ Λ Σ Λ Σ  into (A3) and rearranging gives the 
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equilibrium condition that determines iΛ : 

    1 11 1 1 1 ( ).ii ii x i i u i x i v i u v vv vM M M MA A           Λ Σ Λ Σ Λ Λ Λ Σ Λ Σ Σ Λ Λ Σ ΣO  (A4) 

Given iΛ , it remains to determine 0c , which can be determined from (A2): 

 
  1 1 1 1

0 | 0

1 11
0

( ) ( ) ( ) ( )

( ),

i i i i

i

u v p v v s v v s v

v s iiM

A M   

 

      

  

c Λ Σ I Σ Σ Σ v Σ Σ Σ Q x c

c Λ v Σ Σ Λ x
 (A5) 

 where the second line follows from rearranging the first line, including a substitution from (A3). 

The equilibrium coefficients, given iΛ , are: 

    
1 1 11 1

0
11 1

0

1 1
0 0

( ), ,

( ) ( 1) , ,
( ) , ( ) , ( ).

iv s i pi iM M

M
u u i i u i i i iM

i v p i i i

M
M

  

 

 

  

       
     

c Λ v Σ Σ Λ x C Λ

μ Λ Λ v c x Λ Λ Λ Λ Λ
q Λ v Q Q Λ μ Λ c x

 (A6) 

Substituting iμ  and (A4) into the first expression in (7) yields (13). The uninformed trader’s 

first-order condition implies the first line of (11), while market clearing and (13) imply (14). 

Substituting for E[ | ] E[ | ]v p v s  and md  yield the second line of (11), after a substitution from 

(A4). ■ 

Proof of Corollary 1.1 

If iΛ  is symmetric, then 2 1
M

u iMΛ Λ . Setting 0A   in (A4) and rearranging yields: 

 1/2 1/2 1/2 1/2 1/2 1/2
1 ,i

M
x i x x i x x v xMΣ ΛΣ Σ ΛΣ Σ Σ Σ  (A7) 

which implies (16). Expression (17) follows from substituting 0A   and (16) into (12) and (13).■ 

Proof of Corollary 1.2 

We first prove a preliminary result that the informed trader never reveals all of her 

information ( )s Σ O  and that s Σ  as x Σ . The equilibrium equation (A4) that 

defines iΛ  can be written as: 
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     1 11 11
1 ( ) ( ) .i i i i i

M
i i i v v v s v i i v v sM M A

  
        Λ Λ Λ Σ Σ Σ Σ Σ Λ Λ Σ Σ Σ  (A8) 

If s Σ , then (A8) can be written as    1 11
1

M
i i i v i iM M A

 
    Λ Λ Λ Σ Λ Λ , which is solved 

by 1 2 1
2( 1)

M
i vM M A

Λ Σ .20 In the price-taking uninformed case, we can write this as 1
i vM AΛ Σ . If 

s Σ O , then (A8) can be written as      1 1
1 i

M
i i i i i v vM M A



      Λ Λ Λ Λ Λ Σ Σ , which has 

a negative definite right-hand-side. In the price-taking uninformed case, or for M sufficiently 

large, the left-hand-side approaches iΛ , which must be positive definite in order to satisfy the 

informed trader’s second-order condition. Thus, iΛ  must become unbounded at order 1/2
x
Σ  as 

x Σ O  so that s i x iΣ ΛΣ Λ  does not approach zero. 

If the uninformed traders are price-takers, we can reflect this by dropping uΛ  from the 

expression (A4) that defines iΛ  and from the expression (12) for expected returns. If x Σ , 

then 1
i vM AΛ Σ  because any bounded, nonzero iΛ  yields s Σ . This gives (18). If 

x Σ O , iΛ  becomes unbounded. Solving (A4) for s i x iΣ ΛΣ Λ  and taking limits as i Λ  

for the iΛ  terms other than sΣ  yields is vΣ Σ  as x Σ O . This gives (19), where y 0  

because the variance approaching zero implies that x x , in terms of the mean squared 

difference approaching zero. ■ 

Proof of Remark 

Denote the payoff from the equally-weighted market portfolio by rew. Covariance 

matrices are real and symmetric so that we can, without loss of generality, diagonalize vNΣ  as 

1

N
vN N N N k k kk

   Σ T Θ T θ t t , where NΘ  is a diagonal matrix of eigenvalues, NT  is an 

orthonormal matrix of eigenvectors ( )N N N N  T T T T I , and kt  is the kth column of NT . A $1 
                                                                                                                                                                                          

20 We cannot rule out additional solutions with a non-symmetric iΛ . 
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investment in the equal-weighted portfolio can be represented by a vector of weights 1
N 1 where 

1 is a vector of ones. This gives: 

   2 2
21 1 1

1
var( ) lim var lim lim ( ) .

N
ew N N N vN N k kN kN N

r    
     v Σ t1 1 1 1  (A9) 

The Cauchy-Schwarz inequality implies that 2( ) ( )( )k k k N   t t t1 1 1 , where 1k k t t  follows 

from the eigenvectors being orthonormal. Thus, each summand 2
21 1( )k k kNN

  t1 , which 

approaches zero for any bounded eigenvalue ( )k o N  .21 The elements of the eigenvectors 

associated with unbounded eigenvalues, k N  , have elements of order 1/2N  , which follows 

because 1k k t t  and the eigenvectors have nonzero elements for a nontrivial fraction of the 

assets.22 Thus, the summand 2
21 ( ) 1k kN

 t 1  for any eigenvalue k N  . If there are K such 

unbounded eigenvalues, then the sum is of order K, var( )ewr K . If there are no unbounded 

eigenvalues, then var( ) 0ewr   while if there are infinitely many, then var( )ewr . Thus, the 

positive bounded variance of a finite investment in the equal-weighted portfolio is equivalent to 

having K unbounded eigenvalues, which Chamberlain and Rothschild (1983) show is equivalent 

to having an approximate K-factor structure. ■ 

Proof of Proposition 2 

The proof proceeds in steps. The expected returns can be written as: 

 
1 1 1 11 1

|

Step 3 Step 3Step 1Step 2

( ) ( ) ( ) ( ) .i iv p i i v s i u i i v s iM MA            Σ Λ Λ I Σ Σ Λ x Λ Λ Λ I Σ Σ Λ x   (A10) 

Step 1 shows that the term 1
uM
Λ  that reflects imperfect competition among uninformed investors 

vanishes in the limit. Step 2 gives the limiting expressions for 1
|v pM Σ . Step 3 shows that the 

                                                                                                                                                                                          

21 We use the notation xN = O(yN) to denote that xN/yN is bounded, xN = o(yN) denotes that / 0N Nx y  , and N Nx y  

denote that both xN/yN and yN/xN are bounded and thus increase at roughly the same rate as N   . 
22 This can also be seen by noting that the variance of asset n is 2

1

N
k nkk


 t , which is unbounded for any individual 

asset that bears a fraction greater than order 1/2N of the risk of associated with an eigenvector of order N. 
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matrix that multiplies x  to get the average per capita uninformed demand E[ ]mM d  is bounded, 

which implies that E[ ]mM d  has bounded elements corresponding to the bounded supply of each 

share. 

Step 1: 1
uM Λ  vanishes as ,N M   

Expression (A6) for uΛ , can be written as: 

   11 1 1 ( ),M M
u i i i i i iM M M

       Λ Λ Λ Λ Λ Λ Λ  (A11) 

where the right-hand-side approaches O as ,N M . 

Step 2: 1 1var( | ) var( | )p pM M
v p B f p B  

Applying the formulas for updating normal random variables, we can write the 

conditional variance of v as: 

 

1
|

1 1

var( | , ) cov( , | ) var( | ) cov( , | )

var( | , ) cov( , | ) var( | ) var( | ) var( | ) cov( , | ) ,
p p

v p


 



 

 
B B

Σ v f p v f p f p f v p

e f p v f p f p f p f p f v p 
 (A12) 

where the second line follows from  v Bf e . Because eΣ  has bounded eigenvalues as 

N   , 1 var( | , ) 0M e f p  as ,N M . The proof will follow from showing that Bp equals 

the expression given in the proposition. Applying the rules for updating normal random variables 

and using ( )i i   s v v Λ x x  gives: 
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1

1 1

1

1

1

cov( , | ) cov( , | ) cov( , ) cov( , ) var( ) cov( , )

cov( , ) var( ) cov( , ) cov( , ) var( ) cov( , ),

var( | ) var( | ) cov( , ) var( ) cov( , ),

cov( , | ) var( | )

cov( , ) var( ) var(

p



 







  

  

  



 

v f p v f s v f v s s s f

B B f s s s f e s s s f

f p f s I f s s s f

B v f p f p

B e s s  

 

1

var( )

1 1

var( | ) var( | )

1

| ) cov( , ) cov( , ) var( | ) cov( , )

cov( , ) var( ) var( | ) var( ) cov( , ) cov( , ) var( | ) cov( , )

cov( , ) var( | ) cov( , ).



 

  





  

 

s

s f s f

s f s f f s s f s f

B f s s s f s s f f s s f s f

B e s s f s f




O

(A13) 

Substituting from (A1) for s in (A13) gives the expression for Bp in the proposition. 

Step 3: The vector of average aggregate uninformed trades has bounded elements 

From (12), the average aggregate uninformed trades are 1 1( ) ( )ii i v s i
   Λ Λ I Σ Σ Λ x . 

From (A3), the equation that defines iΛ  can be written as: 

 11 1
| ( ) ( ).i iv p i u v v s i iM MA      Σ Λ Λ Σ Σ Σ Λ Λ  (A14) 

From (A6), we can substitute   11 1 1 ( )M M
i u i i i i iM M M

      Λ Λ Λ Λ Λ Λ Λ  into (A14) and 

rearrange it to get: 

 
1 1

1 1 1 1 1 11 1 1
|

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

i

i

i i v s i

M M
i i i i i i v s v p i i i iM M MA

 

      

  
           

Λ Λ I Σ Σ Λ

Λ Λ Λ Λ Λ Λ I Σ Σ Σ Λ Λ Λ Λ
(A15) 

Taking ,N M  , the right-hand-side approaches: 

 1 11
|( ) ( ) .ii i v s v pM A    I Λ Λ I Σ Σ Σ  (A16) 

The informed trader’s second-order condition implies that i iΛ Λ  has strictly positive 

eigenvalues, which implies that 1( )i i
Λ Λ  is bounded. The matrix 1

|v pM Σ  is bounded if N grows 

no faster than M, which holds under our assumption that they grow at the same rate. If 1
iv s

Σ Σ  is 

unbounded, then 1
is v
 Σ Σ O . We now show that this would violate the informed trader’s 



 

31 

second-order condition. From (A14), we have: 

 1 11 1
| ( ) ( ).

iv p i u s i ivM MA       Σ Λ Λ I Σ Σ Λ Λ  (A17) 

We have already established that 1
uM
 Λ O  so that, if 1

is v
 Σ Σ O , then the right-hand-side of 

(A17) approaches iΛ . But this implies that 1
|2i i v pM A  Λ Λ Σ , which is negative semi-

definite and violates the informed trader’s second-order condition. This implies that the matrix 

1 1( ) ( )ii i v s i
   Λ Λ I Σ Σ Λ  has bounded eigenvalues in the limit. Because x  has bounded 

elements, this implies that E[ ]mM d  has bounded elements. In other words, uninformed traders 

do not take any unboundedly large positions in individual shares, on average. 

Completing the proof 

Step 1 and Step 3 imply that E[ ]u m Λ d 0. Because the elements of E[ ]mM d  are 

bounded, they do not ‘cancel out’ the idiosyncratic risks that Step 2 shows approach zero in 

1
|v pM Σ  so that | |E[ ] E[ ]v p m p f p p mA A Σ d B Σ B d , giving (22). ■ 

Proof of Proposition 3 

Given the assumptions on ivΣ  and xΣ , we can pre- (post-) multiply (A4) by T  (T) to 

and use   TT T T I  to obtain: 

 
2( 1) 1 11 2 1
2 1 2 1

1 3 1 22 1 1 2 1 1
2( 1) 1 2( 1)

( )

( ).

M M
x x v v ii iM M M M

M M M
x x v v ii iM M M M M

A A

A A

     

 

  
 

  
  

    

     

Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ

Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ

O

O
 (A18) 

where we have used 2 1
M

u M   T Λ T Θ  and the fact that diagonal matrices commute. Because the 

matrices in (A18) are diagonal, we can express it as N independent scalar equations: 

 3 22 1 2 1 1
2( 1) 1 2( 1)0 ( ),kx kx k

ki ki

M M M
k k kik kM M M M MA A  

      
        (A19) 

each of which is solved by a unique 0k   because only the leading 3
k  term has a positive 

coefficient. The cubic (A19) can be solved to give a closed-form solution for k ; however, we do 
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not show the solution because the expression is long and not very useful.  

Substituting from v v Σ TΘ T , iv i Σ TΘT , x x Σ TΘ T , and i  Λ TΘ T  into the 

expected returns (11) yields: 

   2 2 1 2 11 1 1
2 2 1E[ ] ( ) ( ) .v i x i xiM MA  

  
      v p T Θ Θ Θ Θ Θ Θ I ΘΘ Θ T x  (A20) 

Because 1/2E[ ] E[ ]f v
   f p Θ T v p , (A20) implies (24). The second expression for 

E[ ]k fkf p  in (24) follows from rearranging (A19) to get: 

 
1 2

2

1
2( 1)1

| 2 1 1
,

kiM
M kxk

ki

kxk

M
k p kM MA



 



 

 




 

  (A21) 

and substituting into the first expression for E[ ]k fkf p  in (24). ■ 

Proof of Corollary 3.1 

The term that multiplies fkx  in the first expression of E[ ]k fkf p  in (24), which, in 

conjunction with the second expression for E[ ]k fkf p , implies that ki

kx
k


  . 

For the first part of the corollary, define the right-hand-side of (A19) as ( )kg  . Because 

( ) 0kg    at the equilibrium k , d
d

k

kx kx

g
 


  . Direct computations give: 

  3 21 2 1 1 1 2 1 1
2( 1) 1 2( 1) ( ) 0,k

kx ki ki kx

g M M M
k k kik kM M M M MA A

         
          (A22) 

where the second equality follows from a substitution from (A19). Noise trade variance impacts 

expected returns via the noise term 2
kxk   and the ‘standalone’ effect of k  in the 1

2 1 kM   term in 

(24). This gives: 

 
   

2

2 2

ddE[ ] E[ ] d1 1
d d 2 2 1 d

0 00

1 0.kxk fk k fk k ki k

kx kx kxkx kxk k

f p f p
M

   
     
  


 

   


 (A23) 

The inequality 2

E[ ] 0k fk

kxk

f p

 
 


  follows from direct computations. We previously showed d

d 0k

kx


  . 
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The inequality 
2d

d 0kxk

kx

 
   follows from computations that give 

2d 3
d 1 0kxk kx

kx ki

M
kk M

  
     , where 

the inequality follows from (A19). Because |k p  is increasing in 2
kxk  , it is increasing in kx . 

The change in the informed trade is: 

  
2

2 2 2

dd d1 1
d 2 d d( ) 2

0 0

.kxfk ki k k

kx kx kxkxk k

y
fk kix f

  
    

 

   (A24) 

Both terms in (A24) indicate the informed trader becomes more aggressive as noise trade 

variance increases. The actual trade size fky  may decrease depending on the realization of kif . 

For the second part of the corollary, if 2
kxk    , then (A19) implies that 

2 1 1
2( 1)

M
k kM MA 

 . If 2 0kxk   , then (A19) implies that 2 1 1
2 ( ) 0M

k k kiM MA     , 

which violates the informed trader’s second-order condition and implies that 2 0kxk   . If 

kx  , then 2
kxk    , giving 2 1 1

2( 1)
M

k kM MA 
  and the statements for kx  . If 

0kx  , then k  becomes unbounded at a rate of 1/2
kx  ; otherwise, 2

kxk   approaches infinity, 

implying a bounded k  and 2 0kxk   , a contradiction, or 2 0kxk   , which generates a 

violation of the informed trader’s second order condition. Expression (A19) can be rearranged 

as: 

 
2 1 1

1 2( 1)
2 1 1

2( 1)

( )
2

1 as .
M M

k k kiM M M
M

k kM M

A
M

kx ki ki kk MA

  

 
    


 




 


    (A25) 

This gives the statements regarding 0kx  , where the statement regarding returns stems from 

the 1
2 1 kM   term that represents imperfect competition among uninformed investors in (24). ■ 

Proof of Corollary 3.2 

If the monopolist trader has no private information ( 0)ki  , then (A19) implies that 
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2 1 1
2( 1)

M
k kM MA 

 , giving expected returns of 1 2 1 1
2 2( 1)E[ ] M

k fk k fkM Mf p A x
  . Comparing to the 

expected return (24), we have: 

 

   2
1 2 1 1 1 1 1

|2 2( 1) 2 1 2

Expected return with no Expected return with private information
private information

1 2 1
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where the second line of (A26) follows after a substitution from (A19) and the inequality always 

holds because 0k  , by the informed trader’s second-order condition, and k ki  . ■ 

Proof of Proposition 4 

The elements of the vector 1/2
f v

 x Θ T x  remain bounded. The eigenvector kt  of 

systematic risk k K  has elements of order 1/2N  (See the proof of the Remark) so that the N-

element sum 1/2
k Nt x   and 1/2 1fk kkx    t x   since 1/2 1/2

k N    for systematic risks. 

For the systematic factors, ,k ki N   . If kx N  , then the coefficients in (A19) are all 

bounded, implying that k  is bounded, as well. If kx N  , 1  , then an argument similar to 

that used in proving Corollary 3.1 implies that (1 )/2
k N   . In both cases, the term in expected 

returns (24) 1
2 1 0kM    because M increases faster than k . In the latter case ( kx N  , 1 

), rearranging (A19) and taking limits, using the fact that k  , implies that 2
kx kik   . 

Substituting into expected returns (24) and informed trade (25) yields (26) and (27). 

For the idiosyncratic factors, if kx  remains bounded, then taking limits on (A19) implies 

that ki

kx
k


  . If kx  becomes unbounded, then (A19) implies that 0k  and 2

kx kik   . 

These two facts give the second part of the proposition. ■ 
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Proof of Corollary 4.1 

We can write the expected returns as follows where the K subscript corresponds to the 

first K elements of the respective expression, corresponding to systematic risks, and the e 

subscript refers to elements 1, 2,K K  , corresponding to idiosyncratic risks: 

 1/2 1/2 1/2E[ ] E[ ] E[ ] E[ ].v f K K fK e e e feK
        v p TΘ f p T Θ f p T Θ f p  (A27) 

Proposition 4 shows that the elements of E[ ]e fef p  approach zero, while the elements of 

1/2
e e

T Θ  are bounded, giving the result of the corollary. ■ 


